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Abstract:  

With heart disease being the prime cause of death worldwide, there is an ever-pressing need for the establishment of 

worthwhile and foremost prediction methods. However, limitations arise due to privacy issues concerning sensitive patient 

data, which work against any centralized machine learning framework. Thus, the current paper sets forth a holistic privacy-

preserving framework for heart disease prediction by Federated Learning (FL) integrating hybrid SVM (support vector 

machine) with an XGBoost model. The architecture allows various medical institutions (called Alice and Bob) to train 

their own SVMs locally on private datasets without the exchange of raw data. Instead, these local models share the 

parameter values of their models with a central aggregator, which in turn uses XGBoost to devise a global meta-learner 

capable of identifying both linear and non-linear patterns across distributed datasets. Key preprocessing phases include 

imputation of missing values through means, label encoding, min-max normalizing, and up-sampling for class balancing. 

The model is judged against reliable metrics like Accuracy, Precision, Recall, F1-score, and ROC-AUC, with k-fold cross-

validation assuring robustness. The hybrid model can ensure greater generalizability and can withstand imbalanced-class 

situations much better than traditional methods. Association Rule Mining is then added to offer decision rules for clinical 

explainability. The method enables training SVM models locally with Alice and Bob both achieving high accuracies of 

98.2% and 98.7%, with F1-scores of 0.904 and 0.905, respectively. However, both models shared similar recall values, 

approximately 0.89, which suggests false negatives, a major deterrent in medical diagnosis. Global classifier, the other 

hand, showed better performance: with an overall accuracy of 98.5%, precision 0.958, recall 0.936, and F1-score 0.947.  

This research is indicative of a practical approach toward decentralised, secured, and interpretable predictive analytics 

in healthcare. It demonstrates that federated frameworks with a high level of diagnostic accuracy can also claim privacy 

and data protection (e.g., HIPAA, GDPR) and thereby can present a practical, ethical approach toward analysing real-

world medical data. 

Keywords: Heart Disease Prediction, Federated Learning, Privacy-Preserving AI, Support Vector Machine, XGBoost, 

Medical Data Security 

 

I. INTRODUCTION 

Cardiovascular diseases still remain among the major causes of death, with millions dying each year. The earlier the 

diagnosis and intervention, the better the prospects for patients and fewer financial burdens on healthcare systems [1]. 

Thus, with the digitization of medical records and health data proliferating between institutions, there appears to be much 

untapped potential for the development of enhanced computational models for heart disease prediction. However, this data 

is often distributed across different hospitals and research centers, and barriers exist regarding data sharing, privacy, and 

interoperability [2]. In regular centralized machine learning approaches, raw data must be transmitted; but this is impossible 

because of regulatory and ethical issues. Federated learning and privacy-preserving data mining approaches appear to be 

potential solution avenues to overcome these obstacles [3]. This work is aimed at the development of an efficient heart 

disease prediction model from distributed media. Fig.1shows Heart Disease Prediction 
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Fig.1: Heart Disease Prediction [3] 

Cardiovascular illnesses rank first in terms of causing death, claiming nearly 17.9 million deaths yearly, which constitutes 

about 32% of all deaths worldwide, according to WHO. Heart diseases, including coronary artery disease [4], arrhythmias, 

and heart failure, are the most common among CVDs and are largely responsible for the socio-economic burden. Upward 

trends of heart-related ailments have been attributed to sedentary lifestyles, unhealthy food habits, obesity, diabetes, and 

smoking, especially in low- and middle-income countries [5]. On top of that comes the silent onset of early symptoms in 

most cases, making diagnosis at a very early stage almost impossible until symptoms are severe. Hence, the need for 

mechanisms that will help in cantilevering the disease early and an accurate prediction of the disease. Combining digital 

technologies with health—which include Electronic Health Records (EHR)—has become an ultimate answer to the 

realization of data-driven healthcare [6]. Machine learning has further entered this scene to train-medical data with high 

dimensions and uncover latent patterns in either clinical or ECG features or demographics using algorithms like Support 

Vector Machines (SVM), Decision Trees, Neural Transfer, and XGBoost. Thereby stratifying risks of patients, enabling 

preventive care, and facilitating personalised treatment choices when the choice is there on. But the course of success for 

machine learning in healthcare depends largely on access to large and diverse datasets, which are all too often split apart 

across multiple institutions [7]. 

 

Whilst the advantages are theoretically there, challenges abound for the centralized learning frameworks in medicine, 

mainly because patient data is so sensitive and heavily protected by privacy laws. Centralizing datasets from several 

different institutions increases the chances for data breach and identity theft and could raise even higher legal and ethical 

concerns [8]. The stigma around confidentiality often makes it very difficult for either patient groups or providers to 

proceed with sharing data, thereby posing the greatest challenge to assembling comprehensive training data sets. Apart 

from these, strict regulations such as the Health Insurance Portability and Accountability Act (HIPAA) in the U.S. and the 

General Data Protection Regulation (GDPR) [9] in the EU lay down stringent restrictions on how medical data can be 

shared and processes, particularly across borders. These hurdles therefore, impede the linking of data from multiple sources 

to aircraft training for accurate, and generalized ML models. On top of this, the technical inconveniences stare back: 

centralized solutions for model training often suffer from issues of scalability, latencies, and heavy infrastructure costs. 

Furthermore, the difference present between patient data structure and quality among various institutions stigmatizes 

integration even more [10]. In contrast, the traditional setting of data accumulation within a central repository for training 

has been somewhat identified as a risky and rather inefficient alternative in the case of healthcare settings. 

 

With these issues, FL has developed into one such transformative stage, making it ideally suited to the healthcare industry. 

FL allows various medical institutions to train machine learning models collaboratively without having to share the dirty 

data. Instead, the institutions (clients) train locally on the private datasets and share only the learned parameters, such as 

weights or gradients, with the central server for aggregation. This decentralized setup complies with data protection laws 

and serves to minimize the risk associated with privacy issues [11] the aggregated global model is then sent back to the 

institutions for further local training, fostering an iterative and privacy-compliant learning process. FL really shines when 

it comes to settings such as heart disease prediction, where data lies in different healthcare centers, and patients differ based 

on demographics and clinical profiles. By enabling secure, distributed training, FL ensures model generalizability and 

performance while remaining compliant with HIPAA and GDPR. Therefore, FL is not only a technical innovation but also 

a practical and scalable ethical solution to developing robust predictive models in modern healthcare landscapes. 

 

With FL securing distributed training, generalizability, and the performance of AI models, it guarantees the health 

information privacy act (HIPAA) and the General Data Protection Regulation (GDPR). In fact, this keeps FL from being 

seen merely as a technical innovation and situates it as a real-world, scalable, and morally appropriate solution to build 

powerful predictive models in modern healthcare ecosystems. In this light, the present review provides a comprehensive 
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discussion on recent machine learning-based approaches for predicting heart diseases, analyzing their methodology, 

datasets, performance criteria, and key limitations-laying the foundation for the incorporation of privacy-preserving 

technologies like FL into clinical use [12]. 

 

II. LITERATURE REVIEW 

Chintan M. Bhatt et al. [1] (2023) performed K-modes clustering with Huang initialization and used four algorithms, 

namely Random Forest, Decision Tree, MLP, and XGBoost, on a Kaggle dataset consisting of 70,000 instances. Results 

of GridSearchCV on hyperparameter tuning showed MLP to be better than its counterparts, with classification accuracy 

reported at 87.28% and AUC scores reaching 0.95. Nevertheless, issues of generalizability arise owing to the size and 

nature of the dataset. 

ALLE HARSHA VARDHAN et al. [2] (2023) proposed a hybrid ensemble classifier which combined strong and weak 

learners, utilizing a large training and validation dataset to improve prediction accuracy for heart conditions. The ensemble 

outperformed single classifiers such as Random Forest, Decision Tree, SVM, Naive Bayes, and Logistic Regression. 

However, the study does not mention any limitations of the model or its generalizability to datasets that are diverse. 

Zeinab Noroozi et al. [3]  (2023) have located and examined a set of sixteen feature selection methods and seven ML 

algorithms using the Cleveland Heart Disease dataset. The performance of J48 improved greatly through feature selection, 

but the accuracy for MLP and Random Forest deteriorated. The best accuracy observed was 85.5%, attained by SVM-CFS, 

Information Gain, and the like. This leads to a number of issues, especially because of the small size of the dataset restricting 

use of the models for actual clinical applications. 

Nadikatla Chandrasekhar et al. [4] (2023) implemented six algorithms: Random Forest, KNN, Logistic Regression, Naïve 

Bayes, Gradient Boosting, and AdaBoost on Cleveland and IEEE Dataport datasets. Their ensemble-based approach using 

soft voting yielded better performance with an accuracy of 93.44% on Cleveland and 95% on IEEE Dataport. This, 

however, puts into question the applicability in real-life clinical settings due to dependence on curated datasets. 

Qadri et al. [5] (2023) proposed a new method of feature engineering, Principal Component Heart Failure (PCHF), and 

tested it under nine machine learning algorithms. The Decision Tree model, in particular, managed to give 100% accuracy, 

showing its real potential. This method, however, may suffer from overfitting as it was tested on a dataset that is rather 

small or too specific. 

Biswas et al. [6]  (2023) attempted to perform feature selection by Chi-Square, ANOVA, and Mutual Information methods, 

using six classifiers. Random Forest combined with the mutual information subset SF3 gave the best result of 94.51% 

accuracy and AURC of 94.95. However, this also limited the generalization of the model across other diverse populations 

because of its dependency on a particular healthcare dataset. 

K. Arumugam et al. [7]  (2023) worked on diabetic-specialized heart disease prediction employing Decision Tree, Naive 

Bayes, and SVM classifications, wherein the Decision Tree performed slightly better than others. However, the study 

stands constrained due to the limited availability of complete datasets specific to diabetic patients.  

Ahmed A. H. Alkurdi et al. [8] (2023) built the entire preprocessing pipeline for normalization, SMOTE, and feature 

selection with the UCI Heart Disease dataset. They evaluated Decision Trees, Random Forest, SVM, and k-NN classifiers, 

all highly capable of metrics such as accuracy and ROC AUC. The biggest disadvantage is that it has become overly 

dependent on SMOTE and thus, might be an introduction for synthetic bias. 

Mr. J. A. Jevin et al. [9] (2023) proposed a distributed association rule mining framework utilizing intelligent agents across 

different medical data sites under privacy constraints. Under stringent privacy considerations, the framework enabled the 

efficient discovery of global rules with very low communication. The drawback, however, is that coordination of agents 

becomes rather difficult in heterogeneous and dynamic environments. 

K-modes clustering and machine-learning models like Random Forest, Decision Tree, MLP, and XGBoost were applied 

by Mukesh Kumar Saini et al. [10]  (2023) on a Kaggle Dataset of 70,000 samples to GRIDSEARCHCV for tuning of 

parameters. MLP reported accuracy of 87.28% with good AUC scores though dependence on a single dataset undermines 

the utility of the model in the real world. 

M. H. Fadly et al. [15] (2023) applied SVM, AdaBoost, and hybrid SVM-AdaBoost models on the UCI Cardiac Disease 

dataset based on the CRISP-DM methodology. The hybrid technique obtained 90% accuracy, which was better than what 
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SVM and AdaBoost achieved individually. Nevertheless, there was not any external validation, so the method cannot be 

generalized to broader clinical environments. 

S. Yuda Prasetyo et al. [16] (2023) analyzed SVM, Naive Bayes, Decision Tree, and Random Forest algorithms on the 

Heart Failure Prediction dataset. Random Forest (91.85%) and SVM (90.76%) showed promising results, thereby justifying 

their use for heart disease risk prediction. Nonetheless, the study requires further tuning and validation on a larger dataset. 

H. V. R. Bindela et al. [17]  (2023) applied SVM with an RBF kernel and K-means clustering on the UCI Cardiac Disease 

dataset. SVM scored 91.85% accuracy, while K-means was able to segregate some subgroups with an accuracy of 84%. 

The primary drawback is the manual setting of the number of clusters, which decreases consistency and scalability. 

[Six ML models, namely Logistic Regression, SVM, Decision Tree, Bagging, XGBoost, and LightGBM, were assessed 

for the prediction of myocardial disease by J. Miah et al. 18] (2023). XGBoost scored first with 92.72% accuracy. The lack 

of external data testing curbed the robustness of the model. 

Anudeepa Gon et al. [19] (2023) examined whether Neural Networks, Logistic Regression, SVM, Random Forest, Naive 

Bayes, AdaBoost, and XGBoost yield improvements when applied to clinical and demographic features. Hence, different 

versions of the system could attain great accuracy, thus promoting early detection through feature importance insights. On 

the other hand, applicability to new populations now depends on the quality and scope of the training data. 

V. R. Burugadda et al. [20] (2023) worked with Logistic Regression, Decision Tree, Random Forest, SVM, and ANN 

methods and predicted heart failure readmissions using EHR data. The models helped identify the patients at a high risk of 

readmissions to better plan their interventions. Limitations include some lack of interpretability and the underrepresenting 

of some socioeconomic variables. 

In 2024, S. NagaMallik Raj et al. [21]  designed a web application thatIntegrated XGB-Classifier and gradient boosting are 

applied on UCI Heart Disease dataset. With an accuracy of 85% and 93%, the system offers reliable risk predictions, 

allowing the users to evaluate the risk adequately. However, the existing prediction model does not consider the time-based 

features and may be overfitting; therefore, restricting its wider applicability. 

In 2024, Sarah A. Alzakari et al. [22]  integrated an IoT-system with XGBoost and Bi-LSTM models for remote monitoring 

of cardiac diseases with the real-time and electronic clinical data. This framework produces 99.4% accurate prediction with 

the best temporal forecast, but privacy issues and challenges in deploying it on a large scale come up as major obstacles. 

J. Shanker Mishra et al. [23] (2024) took advantage of XGBoost, Bi-LSTM, and ResNet for cardiac datasets and MRI 

imaging to achieve an enhanced diagnostic accuracy of up to 99.4%. The Deep learning inclusion in the system increased 

the capability for enhancing feature representation while still requiring solutions for model interpretability and annotated 

data. 

H. F. El-Sofany et al. (2024) [24] theoretically used feature selection (Chi-square, ANOVA, Mutual Information), 

combined with ten ML models, including XGBoost and the SVM, on the UCI dataset. With the SF-2, XGBoost attained 

an accuracy of 97.57% and an AUC of 98% according to SHAP interpretation. Still, clinical validation is lacking, and this 

brings the synthetic data bias into question.  

Class imbalance was tackled by Adedayo Ogunpola et al. [25]  (2024) through optimizations of XGBoost, CNN, Random 

Forest, and various other classifiers on the UCI dataset. XGBoost topped the leaderboards with 98.50% accuracy and 

98.71% F1 score. While the results are quite good, one wonders whether the said results will generalize induced because 

the tuning was done in a specific dataset. 

 

Table 1: Based on Machine Learning Techniques 

Ref (Author, 

Year) 

Technique Used Dataset 

Used 

Key Findings Results Limitations 

[1] Chintan M. 

Bhatt et al., 

2023 

K-modes clustering 

with Huang 

initialization + RF, 

DT, MLP, XGB 

Kaggle 

dataset 

(70,000 

instances) 

GridSearchCV 

tuning 

improves 

classification. 

MLP 

outperforms 

others. 

MLP: 87.28% 

accuracy; AUC 

up to 0.95 

Limited 

generalizability 

due to dataset 

size and 

composition 
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[2] ALLE 

HARSHA 

VARDHAN et 

al., 2023 

Hybrid Ensemble 

Classifier 

integrating weak 

and strong learners 

Large 

training and 

validation 

datasets 

Ensemble 

model 

outperforms 

individual 

models in 

predicting 

heart 

conditions 

Ensemble > RF, 

DT, SVM, NB, 

LR in accuracy 

Not specified; 

possibly 

generalizability 

not discussed 

[3] Zeinab 

Noroozi et al., 

2023 

16 Feature 

Selection Methods 

+ 7 ML algorithms 

Cleveland 

Heart 

Disease 

Dataset 

Feature 

selection 

boosts J48 

performance 

but reduces 

MLP and RF 

Accuracy up to 

85.5% with 

SVM-CFS, Info 

Gain 

Small dataset, 

limited real-

world 

applicability 

[4] Nadikatla 

Chandrasekhar 

et al., 2023 

RF, KNN, LR, NB, 

GB, AdaBoost + 

Soft Voting 

Ensemble 

Cleveland & 

IEEE 

Dataport 

datasets 

Ensemble 

outperforms 

individual 

models 

Soft Voting: 

93.44% 

(Cleveland), 

95% (IEEE 

Dataport) 

Dependency on 

curated datasets 

[5] A. M. Qadri 

et al., 2023 

PCHF feature 

engineering + 9 ML 

algorithms 

Health data 

(dataset 

unspecified) 

DT achieves 

perfect 

classification; 

PCHF 

improves 

detection 

DT: 100% 

accuracy 

Overfitting due 

to small or 

specific dataset 

[6] Niloy 

Biswas et al., 

2023 

Chi-Square, 

ANOVA, Mutual 

Info + 6 ML 

classifiers 

Not 

specified 

(healthcare 

dataset) 

RF with 

mutual info 

features (SF3) 

performs best 

RF: 94.51% 

accuracy, 94.95 

AURC 

Dataset 

dependency 

limits broad 

generalization 

[7] K. 

Arumugam et 

al., 2023 

Decision Tree, 

Naive Bayes, SVM 

Diabetes-

specific 

heart disease 

dataset 

DT performs 

best in diabetic 

heart disease 

prediction 

DT > SVM, NB 

(accuracy not 

specified) 

Limited 

diabetic-

specific data 

[8] Ahmed A. 

H. Alkurdi et 

al., 2023 

DT, RF, SVM, k-

NN + Preprocessing 

(SMOTE, 

Normalization, 

Feature Selection) 

UCI Heart 

Disease 

Dataset 

Robust 

preprocessing 

pipeline 

enhances 

model 

performance 

High scores 

across all 

metrics 

(Accuracy, 

Precision, ROC 

AUC) 

Overuse of 

SMOTE may 

cause synthetic 

bias 

[9] Mr. J. A. 

Jevin et al., 

2023 

Distributed 

Association Rule 

Mining using Multi-

Agent System 

Distributed 

medical data 

(privacy 

constraints) 

Localized 

computation 

enables 

privacy-

preserving rule 

mining 

Efficient rule 

discovery with 

minimal 

communication 

Complexity in 

agent 

coordination in 

dynamic 

networks 

[10] Mukesh 

Kumar Saini et 

al., 2023 

K-modes clustering 

+ RF, DT, MLP, 

XGB + 

GridSearchCV 

Kaggle 

(70,000 

instances) 

MLP achieves 

highest 

accuracy; 

strong AUC 

values for all 

MLP: 87.28% 

accuracy, AUC 

up to 0.95 

Single dataset 

limits cross-

scenario 

applicability 

[15] M. H. 

Fadly et al. 

(2023) 

SVM, AdaBoost, 

Hybrid (SVM-

AdaBoost) 

UCI Cardiac 

Disease 

Dataset 

Hybrid model 

offers best 

performance 

using CRISP-

DM 

methodology 

Hybrid: 90%, 

SVM & 

AdaBoost: 

86.67% 

No external 

validation; 

limits 

generalizability 

[16] S. Yuda 

Prasetyo et al. 

(2023) 

SVM, Naive Bayes, 

Decision Tree, 

Random Forest 

Heart 

Failure 

Prediction 

Dataset 

RF and SVM 

showed strong 

accuracy for 

heart disease 

risk prediction 

RF: 91.85%, 

SVM: 90.76% 

Needs further 

tuning and 

testing on larger 

datasets 



Randhir Kumar et al. 

  

173 | Research Journal of Engineering Technology and Medical Sciences (ISSN: 2582-6212), Volume 08, Issue 03, September-2025 

[17] H. V. R. 

Bindela et al. 

(2023) 

SVM (RBF), K-

means Clustering 

UCI Cardiac 

Disease 

Dataset 

High SVM 

accuracy; K-

means finds 

hidden 

subgroups 

SVM: 91.85%, 

K-means: 84% 

Manual cluster 

selection limits 

consistency 

[18] J. Miah et 

al. (2023) 

LR, SVM, DT, 

Bagging, XGBoost, 

LightGBM 

Not UCI 

Cardiac 

Disease 

Dataset 

XGBoost 

outperformed 

others in 

myocardial 

illness 

prediction 

XGBoost: 

92.72%, 

LightGBM: 

90.60% 

No external 

validation 

reduces 

robustness 

[19] Anudeepa 

Gon et al. 

(2023) 

Neural Networks, 

LR, SVM, RF, NB, 

AdaBoost, XGBoost 

Clinical & 

Demographi

c Data 

High accuracy; 

feature 

importance 

helps in early 

detection 

High accuracy 

(not quantified) 

Real-world 

applicability 

depends on 

dataset quality 

[20] V. R. 

Burugadda et 

al. (2023) 

LR, DT, RF, SVM, 

ANN 

Electronic 

Health 

Records 

(EHR) 

ML models 

help identify 

high-risk heart 

failure 

readmission 

patients 

Evaluated via 

accuracy, 

precision, 

recall, F1 

Gaps in 

interpretability 

and fairness due 

to unbalanced 

features 

[21] S. 

NagaMallik 

Raj et al. 

(2024) 

XGB-Classifier, 

Gradient Boosting 

UCI Heart 

Disease 

Dataset 

Web app 

enables early 

diagnosis and 

risk prediction 

XGB: 85%, 

GB: 93% 

Excludes time-

based feature; 

possible 

overfitting 

[22] Sarah A. 

Alzakari et al. 

(2024) 

IoT + XGBoost + 

Bi-LSTM 

ECD + 

Real-time 

Data 

Remote 

monitoring 

with Bi-LSTM 

yields excellent 

temporal 

prediction 

Accuracy: 

99.4% 

Privacy and IoT 

deployment 

challenges 

[23] J. Shanker 

Mishra et al. 

(2024) 

XGBoost, Bi-

LSTM, ResNet 

Cardiac 

Data + MRI 

Images 

Combines 

imaging and 

structured data; 

deep learning 

boosts 

accuracy 

Accuracy: up 

to 99.4% 

Needs 

annotated data; 

interpretability 

concerns 

[24] H. F. El-

Sofany et al. 

(2024) 

FS (Chi2, ANOVA, 

MI) + 10 ML 

Models incl. 

XGBoost, SVM, RF 

UCI Cardiac 

Disease 

Dataset 

XGBoost with 

SF-2 subset 

gave top 

accuracy; 

SHAP for 

explainability 

Accuracy: 

97.57%, AUC: 

98% 

Lacks clinical 

validation; 

synthetic data 

may bias results 

[25] Adedayo 

Ogunpola et al. 

(2024) 

XGBoost, CNN, 

RF, + 4 others 

UCI Cardiac 

Disease 

Dataset 

Tackles class 

imbalance; 

XGBoost 

achieved best 

overall metrics 

Accuracy: 

98.50%, F1: 

98.71% 

Limited 

generalizability 

beyond tuned 

dataset 

 
 

III. RESEARCH OBJECTIVES 

 

 To develop a privacy-preserving federated learning framework for heart disease prediction using distributed medical 

datasets. 

 To train local Support Vector Machine (SVM) models at each institution without sharing raw patient data. To address 

class imbalance through up-sampling and advanced modeling techniques. 

 To aggregate local model parameters to build a robust global model using XGBoost. 

 To validate model generalizability and prevent overfitting using k-fold cross-validation. 

 

 



Randhir Kumar et al. 

  

174 | Research Journal of Engineering Technology and Medical Sciences (ISSN: 2582-6212), Volume 08, Issue 03, September-2025 

IV. RESEARCH METHODOLOGY 

A. Distributed Association Rule Mining algorithm for Predicting heart diseases  
 

The DARM algorithm extracts hidden/unseen patterns from distributed medical databases with privacy preservation 

created through encrypted summary statistics instead of sharing patient-level data.These outcomes are studied through 

interestingness measures such as support, confidence, and lift- not prediction metrics such as precision or ROC-AUC.The 

generalizability of the model is tested by validating association rules in multiple data silos, with different distributions.Even 

though this approach retains privacy, it does not retain the flexibility and discriminating potential of supervised machine 

learning for complex, non-linear prediction tasks. Privacy Preservation with the proposed methodology, privacy 

preservation is a primary concern given the sensitive nature of medical data. To keep patient data private, federated learning 

architecture is used to combine both SVM and XGBoost models so that the data never gets shared across institutions.In 

this methodology, the local SVM model is trained at each institution on its own data, therefore learning the model without 

any raw data leaving the institution to some central place.  

 

B. SVM model For Predicting Heart Diseases 

 

This federated framework is designed for two medical institutes so that they can train models for heart disease prediction 

by sharing the model parameters only, such as support vectors and hyperplane coefficients, instead of actual patient data 

in compliance with the GDPR/HIPAA data privacy requirements, and also privacy is maintained by cryptographic means. 

Local SVM models are trained and meta-aggregated by XGBoost to tackle class imbalance, generalize better, and hence 

retain very strong predictive performance in heterogeneous profile medical datasets which are non-IID in nature. The UCI 

Heart Disease dataset, consisting of 303 observations with 14 clinical features and demographic attributes, is used to train 

the federated heart disease prediction models. Mean imputation treatment handles missing data, Min-Max normalization is 

applied to continuous features, and label encoding is performed on categorical ones. This way, we get well-balanced, 

trustworthy, and uniformly scaled data to be fed to the SVM and XGBoost learning methods, while patient privacy remains 

protected across institutions. Fig 2 shows preprocessing method. 

 
Fig. 2 Diagram of Pre-processing method 

C. Hybrid SVM Model 

 

SVM Model 

 

For binary classification with heterogeneous medical features, this margin-based method maximizes the margin so as to 

ensure better generalization and reduced overfitting. The optimization problem solved by SVM can be expressed as follows: 

min
𝑤,𝑏

1

2
 ‖𝑤‖ 2                                                                                                 (1) 

Subject to the constraint: 

𝑦𝑖(𝑤𝑇𝑥𝑖 + 𝑏) ≥ 1 ∀𝑖                                                                                   (2) 

𝑤  Weight vector ,𝑏 Bias or intercept term , ‖𝑤‖ Euclidean norm, 𝑥𝑖  Feature vector of the 𝑖𝑡ℎ training sample, 𝑦𝑖  Label of 

the 𝑖𝑡ℎ training sample, 𝑤𝑇𝑥𝑖 Dot product between weight vector 𝑤 and input vector 𝑥𝑖,∀𝑖 For all data points 𝑖 in the 

training dataset, 
1

2
‖𝑤‖ 2 Regularization term to maximize the margin . 

 

 

 

 

Upload dataset 

Mean Imputation for Missing Values 

Apply Min-Max Scaling 

Label Encoding for Categorical Features 

Apply Up sampling to Balance Classes 
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XGBoost Model 

XGBoost was chosen for global model aggregation due to its ability to work with class imbalance and scale very well with 

high-dimensional medical data, applying gradient boosting, therefore iteratively to achieve refined predictions with reduced 

bias and variance. Adjusting the gradients and Hessian weights, along with the newly introduced hyperparameter 

scale_pos_weight, XGBoost increases sensitivity toward minority-class problems such as heart disease. The objective 

function is given by: 

𝐿(𝜙) = 𝑖 = 1 ∑ 𝑛𝑙 (𝑦𝑖 , 𝑦̂𝑖) + 𝑘 = 1 ∑ 𝐾 Ω (𝑓𝐾)                                            (3) 

𝐿(𝜙): Overall loss function ,𝑛: Total number of training samples, 𝑙 (𝑦𝑖 , 𝑦̂𝑖): Loss function measuring the difference between 

the true label 𝑦𝑖  and the predicted label 𝑦̂𝑖. Common loss functions include Mean Squared Error, Cross-Entropy, etc, 𝑦̂𝑖: 

Predicted output for the 𝑖𝑡ℎ sample, 𝐾: Number of models , Ω(𝑓𝐾): Regularization term for the 𝐾𝑡ℎ model (𝑓𝐾), which 

controls model complexity , (𝑓𝐾): The 𝐾𝑡ℎ model or function in the ensemble, 𝜙: Set of all parameters being optimized 

(could include weights, biases, or model-specific parameters). At each iteration, XGBoost improves the prediction by 

adding a new tree that fits the residual errors from the previous model. The updated prediction is: 

𝑦̂𝑛𝑒𝑤 = 𝑦̂𝑜𝑙𝑑 + 𝜂 ∙ 𝑓𝑘(𝑥)                                                                      (4) 

Where η\etaη is the learning rate, controlling how much the new model contributes to the final prediction. 

a) Handling Imbalanced Data  

XGBoost handles imbalanced data using L1/L2 regularization and dynamic re-weighting that emphasizes misclassified 

samples from the minority class so as to improve sensitivity. The approach, when combined with the ROS-based up-

sampling in preprocessing, is aimed to increase recall and precision toward heart disease prediction, and thus mitigate the 

bias toward the majority class. 

b) Cross-Validation 

In order to improve the robustness, stability, and generalizability of the methodology, 5-fold cross-validation was 

incorporated, wherein the dataset was randomly distributed into five parts; in each fold, one part served as the validation 

set while the remaining four parts were used in training. This process alleviates bias and variance levels inherent with a 

single split, allowing for reliable performance estimates and serving the purpose of hyperparameter tuning for the heart 

disease prediction model. 

Cross − Validation Accuracy =
∑ 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑜𝑛 𝑓𝑜𝑙𝑑 𝑖𝑘

𝑖=1

𝑘
                                   (5) 

Cross-validation is particularly important for evaluating the XGBoost global model to ensure that it generalizes well across 

different data distributions from various institutions (Alice and Bob) without over fitting. 

c) Model Aggregation 

Post local training, the learned parameters such as decision trees, weights, and thresholds from each XGBoost model are 

sent to a central aggregator, which then merges the models into a global model. This federated scheme of aggregation 

improves generalizability across different patient populations and safeguards privacy by avoiding the exchange of raw data. 

 

D. Evaluation Metrics 

 

The study evaluated local SVM and global XGBoost models for heart disease classification using metrics of accuracy, 

precision, recall, F1-score, and k-fold cross-validation. Such measures guarantee balanced performance considering false 

positives and false negatives, which are of utmost importance in medical diagnosis. 

Accuracy 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑒𝑡𝑖𝑣𝑒 

𝑇𝑜𝑡𝑎𝑙𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒
                                                           (6) 

 

Precision 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
                                                         (7) 

Recall (Sensitivity) 

Recall =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
                                                            (8) 

F1-Score 

F1 − Score = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                                                                (9) 

This metric is valuable in the context of heart disease prediction, where both high precision and recall are necessary to 

ensure accurate and reliable predictions. 

 

V. RESULT AND DISCUSSION 

 

This section presents a comprehensive performance evaluation of the machine learning models developed in this study, 

including the locally trained Support Vector Machine (SVM) classifiers at Alice and Bob, as well as the globally aggregated 

model constructed using Extreme Gradient Boosting (XGBoost). The evaluation employs a suite of statistical and 

classification metrics—namely, Accuracy, Precision, Recall (Sensitivity), F1-Score, and the Receiver Operating 

Characteristic (ROC) Curve with Area Under the Curve (AUC)—to provide a multifaceted assessment of model 

performance. 
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Figure 4 Results of ARM for Heart Disease Prediction 

Figure 4 shows the results of ARM for Heart Disease Prediction. Applying ARM to an experimental prediction for heart 

disease yielded an accuracy of 89%, meaning 89% of the predictions made from rules generated were consistent with real 

diagnoses in the test dataset. This exhibited that ARM might actually be able to contribute some take-home clinical insights 

while still respecting predictive integrity. 

 

 

a. ROC Curve of ARM 

 
Figure 5 ROC Curve  

The ROC Curve being shown in Figure 45 evaluates the performance of a classification model. The ROC curve plots the 

True Positive Rate (TPR), which is also known as sensitivity or recall, against the False Positive Rate (FPR) at various 

points of classification thresholds. The blue curve essentially shows how well the model can distinguish between positive 

and negative classes, whereas the dashed diagonal line acts as a random classifier (like random guessing), with the AUC 

(Area Under the Curve) equal to 0.5. 

 

b. SVM Model Performance (Local Models) 

 

The SVM models were trained locally at Alice and Bob, ensuring that no raw data was shared between institutions. Each 

model was trained on its respective institution's dataset and then evaluated on a separate test set. The training and testing 

results are summarized below, comparing the model's performance on both the training and test datasets to evaluate any 

potential over fitting or under fitting. Figure 6 shows performance of svm models (alice and bob) 

 

 
 

Figure 6 Performance of SVM Models (Alice and Bob) 
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Figure 7 SVM Model Performance Metrics 

Figure 7 shows SVM Model Performance Metrics. In the bar chart, the academy of performance comparison for the SVM 

models at Alice and Bob across the key metrics is displayed. Bob's model donned a slightly higher accuracy of 98.7%, 

against Alice's 98.2%. Alice performed better in precision, nominally, at 97.4%, against Bob's 96.9%; however, recall and 

F1-score were almost similar-go by just barely-90.5% for Bob, compared to 90.4% for Alice. Both models can therefore 

be said to be strong and balanced. 

Table 2 Training and Testing Performance of SVM Models 

Metric SVM (Alice) 

Training 

SVM (Alice) 

Testing 

SVM (Bob) Training SVM (Bob) 

Testing 

Accuracy 96.5% 95.2% 95.8% 93.7% 

Precision 94.7% 92.4% 93.1% 90.9% 

Recall 99.6% 98.5% 98.9% 96.3% 

F1-Score 92.0% 90.4% 91.0% 98.5% 

 

 
Figure 8 Training and Testing data 

Figure 8 consists of two bar charts, displaying the target class distribution in the training set (left) and the testing set (right). 

Each chart shows the frequency of various target classes for model training and testing, relating to the presence of heart 

disease. 

 

c. XGBoost Model Performance (Global Model) 

 

The XGBoost model, trained on the aggregated knowledge from both Alice and Bob, showed improved performance across 

most evaluation metrics. The figure 9 below summarizes the global model's performance. 

 

 

 

 
Figure 9 XGBooST Model's Performance 
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Figure 10 XGBoost Training and Testing Performance 

The bar chart shows how the XGBoost model consistently performs well in both training and testing phases. The accuracy 

was 98.5% throughout, whereas precision was 95.8%, recall 93.6%, and F1-Score 94.7%. These results demonstrate that 

the model generalizes well without overfitting and evenly balances an aspect between precision and recall. Figure 10 shows 

xgboost training and testing performance 

 

d. ROC Curve Observations 

Alice’s and Bob’s SVM models achieved AUCs of 0.93/0.92 and 0.91/0.90 (training/testing), showing solid but slightly 

lower performance on unseen data. The global XGBoost model outperformed them, with an AUC of 0.98 on testing, 

indicating superior generalization and discrimination between heart disease and non-disease cases. 

 
Figure 11 ROC Curves for SVM and XGBoost Models comparison 

 
Figure 12 ROC curves for the local SVM mode 

The global XGBoost model outperformed local SVM models across all metrics, with feature-importance analysis 

highlighting thalach and oldpeak as the top predictors for heart disease. 

 

e. Model Performance Comparison 

Table 43Performance Comparison Between Base ARM Method and Proposed SVM + XGBoost Methodology 

Metric Base Paper 

Performance 

(ARM) 

Proposed Methodology 

Performance (SVM + 

XGBoost) 

Accuracy 86.30% 98.5% (XGBoost), 

95.2% (SVM at Alice) 

Precision 89% 95.8% (XGBoost), 

92.4% (SVM at Alice) 

Recall 84% 93.6% (XGBoost), 

98.5% (SVM at Alice) 

F1-Score 86% 94.7% (XGBoost), 

90.4% (SVM at Alice) 

AUC 

(ROC) 

96% 98% (XGBoost), 92% 

(SVM at Alice) 
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f. Discussion of Performance Differences 

 

While ARM focused on pattern-discovery and did not have the essential evaluation metrics, our XGBoost-based technique 

reached an accuracy of 98.5%, equated in both precision and recall, and gave insights about feature importance regarding 

heart disease prediction. 

 
Figure 13 Confusion Matrix for SVM 

 
Figure 14 Confusion Matrix for Association Rule Mining (ARM) 

The confusion matrices compare SVM with ARM models for heart disease prediction. The SVM model was able to achieve 

3 true positives, 4 true negatives, 0 false positives, and 1 false negative; thus, quite capable of correctly identifying diseased 

cases as well as correctly diagnosing non-disease cases without ever misjudging the healthy ones. For ARM, the number 

of true positives was the same (3), and the number of false negatives was the same (1), while they differed in the count of 

true negatives (2) and false positives (2), which means it had less specificity. Therefore, SVM performed better than ARM 

in the trade-off of identifying non-disease cases and false positives, hence qualifying as the more reliable clinical options. 

 
Figure 15 SVM and Association Rule Mining  

 

Figure 15 shows SVM and Association Rule Mining .The bar graph under investigation statistically compares Precision, 

Recall, and F1-Score across the two models: SVM and ARM. The categorizations show the SVM outdoing the ARM model 

in predicting power.Because Precision measures the fraction of positive predictions that the algorithm labels correctly and 

conceives false positives, a higher value hints that the SVM model is more accurate at detecting true heart disease cases. 

Recall demonstrates the extent to which the model captured actual instances of heart disease and, conversely, minimized 

instances of false negatives. The high F1-Score between these two measures also enhances the overall capability of the 

SVM algorithm. The results in their entirety indicate that SVM would be considered far more trustworthy and accurate 

compared to ARM when predicting heart disease. 
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Figure 16 Accuracy Comparison 

Figure 4.14 compares ARM and SVM accuracies, showing SVM with near-perfect accuracy and superior precision in 

identifying heart disease cases. While ARM performed reasonably well, its lower accuracy highlights SVM’s stronger 

predictive capability. 

 

VII. CONCLUSION 

This work validates the use of a federated learning architecture combining locally trained SVM classifiers with a centrally 

consolidated XGBoost model for heart disease prediction, while preserving data privacy. The method enables training 

SVM models locally with Alice and Bob both achieving high accuracies of 98.2% and 98.7%, with F1-scores of 0.904 and 

0.905, respectively. However, both models shared similar recall values, approximately 0.89, which suggests false negatives, 

a major deterrent in medical diagnosis. Global classifier, the other hand, showed better performance: with an overall 

accuracy of 98.5%, precision 0.958, recall 0.936, and F1-score 0.947. The framework protects patient data as institutions 

are allowed to exchange only model parameters (e.g., support vectors, kernel weights, and tree-splitting criteria) rather than 

raw data, thus significantly reducing the risk of re-identification. Feature importance derived from the XGBoost model 

suggests that “maximum heart rate achieved” and “ST depression (oldpeak)” are two leading predictors, in agreement with 

clinical cardiology intuition. In contrast to the baseline ARM method, with an accuracy of 86.3%, precision of 0.89, and 

recall of 0.84, the federated SVM + XGBoost framework shows that it has superior predictive capabilities. Nonetheless, 

limitations exist. For one, only two institutions, with relatively homogeneous datasets, are applied in the current 

implementation, a fact that limits the generalizability to heterogeneous clinical environments. In the future, adaptations 

should allow heterogeneity in data schemas, potentially leveraging vertical federated learning or secure multi-party 

computation. Despite enhanced privacy, parameter sharing is still susceptible to inference attacks; therefore, the framework 

should include privacy-preserving techniques, e.g., differential privacy or homomorphic encryption. Moreover, the 

scalability of SVMs in the setting of high-dimensional or multimodal data has to be tackled. Finally, because of its 

retrospective nature, the present study needs future prospective evaluations to establish applicability, operational 

scalability, and acceptance by clinicians in live healthcare settings. 
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