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Abstract:

With heart disease being the prime cause of death worldwide, there is an ever-pressing need for the establishment of
worthwhile and foremost prediction methods. However, limitations arise due to privacy issues concerning sensitive patient
data, which work against any centralized machine learning framework. Thus, the current paper sets forth a holistic privacy-
preserving framework for heart disease prediction by Federated Learning (FL) integrating hybrid SVM (support vector
machine) with an XGBoost model. The architecture allows various medical institutions (called Alice and Bob) to train
their own SVMs locally on private datasets without the exchange of raw data. Instead, these local models share the
parameter values of their models with a central aggregator, which in turn uses XGBoost to devise a global meta-learner
capable of identifying both linear and non-linear patterns across distributed datasets. Key preprocessing phases include
imputation of missing values through means, label encoding, min-max normalizing, and up-sampling for class balancing.
The model is judged against reliable metrics like Accuracy, Precision, Recall, F1-score, and ROC-AUC, with k-fold cross-
validation assuring robustness. The hybrid model can ensure greater generalizability and can withstand imbalanced-class
situations much better than traditional methods. Association Rule Mining is then added to offer decision rules for clinical
explainability. The method enables training SVM models locally with Alice and Bob both achieving high accuracies of
98.2% and 98.7%, with F1-scores of 0.904 and 0.905, respectively. However, both models shared similar recall values,
approximately 0.89, which suggests false negatives, a major deterrent in medical diagnosis. Global classifier, the other
hand, showed better performance: with an overall accuracy of 98.5%, precision 0.958, recall 0.936, and F1-score 0.947.
This research is indicative of a practical approach toward decentralised, secured, and interpretable predictive analytics
in healthcare. It demonstrates that federated frameworks with a high level of diagnostic accuracy can also claim privacy
and data protection (e.g., HIPAA, GDPR) and thereby can present a practical, ethical approach toward analysing real-
world medical data.

Keywords: Heart Disease Prediction, Federated Learning, Privacy-Preserving Al, Support Vector Machine, XGBoost,
Medical Data Security

1. INTRODUCTION

Cardiovascular diseases still remain among the major causes of death, with millions dying each year. The earlier the
diagnosis and intervention, the better the prospects for patients and fewer financial burdens on healthcare systems [1].
Thus, with the digitization of medical records and health data proliferating between institutions, there appears to be much
untapped potential for the development of enhanced computational models for heart disease prediction. However, this data
is often distributed across different hospitals and research centers, and barriers exist regarding data sharing, privacy, and
interoperability [2]. In regular centralized machine learning approaches, raw data must be transmitted; but this is impossible
because of regulatory and ethical issues. Federated learning and privacy-preserving data mining approaches appear to be
potential solution avenues to overcome these obstacles [3]. This work is aimed at the development of an efficient heart
disease prediction model from distributed media. Fig.1shows Heart Disease Prediction
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Fig.1: Heart Disease Prediction [3]

Cardiovascular illnesses rank first in terms of causing death, claiming nearly 17.9 million deaths yearly, which constitutes
about 32% of all deaths worldwide, according to WHO. Heart diseases, including coronary artery disease [4], arrhythmias,
and heart failure, are the most common among CVDs and are largely responsible for the socio-economic burden. Upward
trends of heart-related ailments have been attributed to sedentary lifestyles, unhealthy food habits, obesity, diabetes, and
smoking, especially in low- and middle-income countries [5]. On top of that comes the silent onset of early symptoms in
most cases, making diagnosis at a very early stage almost impossible until symptoms are severe. Hence, the need for
mechanisms that will help in cantilevering the disease early and an accurate prediction of the disease. Combining digital
technologies with health—which include Electronic Health Records (EHR)—has become an ultimate answer to the
realization of data-driven healthcare [6]. Machine learning has further entered this scene to train-medical data with high
dimensions and uncover latent patterns in either clinical or ECG features or demographics using algorithms like Support
Vector Machines (SVM), Decision Trees, Neural Transfer, and XGBoost. Thereby stratifying risks of patients, enabling
preventive care, and facilitating personalised treatment choices when the choice is there on. But the course of success for
machine learning in healthcare depends largely on access to large and diverse datasets, which are all too often split apart
across multiple institutions [7].

Blood clot in
veins

Stroke

Whilst the advantages are theoretically there, challenges abound for the centralized learning frameworks in medicine,
mainly because patient data is so sensitive and heavily protected by privacy laws. Centralizing datasets from several
different institutions increases the chances for data breach and identity theft and could raise even higher legal and ethical
concerns [8]. The stigma around confidentiality often makes it very difficult for either patient groups or providers to
proceed with sharing data, thereby posing the greatest challenge to assembling comprehensive training data sets. Apart
from these, strict regulations such as the Health Insurance Portability and Accountability Act (HIPAA) in the U.S. and the
General Data Protection Regulation (GDPR) [9] in the EU lay down stringent restrictions on how medical data can be
shared and processes, particularly across borders. These hurdles therefore, impede the linking of data from multiple sources
to aircraft training for accurate, and generalized ML models. On top of this, the technical inconveniences stare back:
centralized solutions for model training often suffer from issues of scalability, latencies, and heavy infrastructure costs.
Furthermore, the difference present between patient data structure and quality among various institutions stigmatizes
integration even more [10]. In contrast, the traditional setting of data accumulation within a central repository for training
has been somewhat identified as a risky and rather inefficient alternative in the case of healthcare settings.

With these issues, FL has developed into one such transformative stage, making it ideally suited to the healthcare industry.
FL allows various medical institutions to train machine learning models collaboratively without having to share the dirty
data. Instead, the institutions (clients) train locally on the private datasets and share only the learned parameters, such as
weights or gradients, with the central server for aggregation. This decentralized setup complies with data protection laws
and serves to minimize the risk associated with privacy issues [11] the aggregated global model is then sent back to the
institutions for further local training, fostering an iterative and privacy-compliant learning process. FL really shines when
it comes to settings such as heart disease prediction, where data lies in different healthcare centers, and patients differ based
on demographics and clinical profiles. By enabling secure, distributed training, FL ensures model generalizability and
performance while remaining compliant with HIPAA and GDPR. Therefore, FL is not only a technical innovation but also
a practical and scalable ethical solution to developing robust predictive models in modern healthcare landscapes.

With FL securing distributed training, generalizability, and the performance of Al models, it guarantees the health
information privacy act (HIPAA) and the General Data Protection Regulation (GDPR). In fact, this keeps FL from being
seen merely as a technical innovation and situates it as a real-world, scalable, and morally appropriate solution to build
powerful predictive models in modern healthcare ecosystems. In this light, the present review provides a comprehensive
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discussion on recent machine learning-based approaches for predicting heart diseases, analyzing their methodology,
datasets, performance criteria, and key limitations-laying the foundation for the incorporation of privacy-preserving
technologies like FL into clinical use [12].

Il. LITERATURE REVIEW

Chintan M. Bhatt et al. [1] (2023) performed K-modes clustering with Huang initialization and used four algorithms,
namely Random Forest, Decision Tree, MLP, and XGBoost, on a Kaggle dataset consisting of 70,000 instances. Results
of GridSearchCV on hyperparameter tuning showed MLP to be better than its counterparts, with classification accuracy
reported at 87.28% and AUC scores reaching 0.95. Nevertheless, issues of generalizability arise owing to the size and
nature of the dataset.

ALLE HARSHA VARDHAN et al. [2] (2023) proposed a hybrid ensemble classifier which combined strong and weak
learners, utilizing a large training and validation dataset to improve prediction accuracy for heart conditions. The ensemble
outperformed single classifiers such as Random Forest, Decision Tree, SVM, Naive Bayes, and Logistic Regression.
However, the study does not mention any limitations of the model or its generalizability to datasets that are diverse.

Zeinab Noroozi et al. [3] (2023) have located and examined a set of sixteen feature selection methods and seven ML
algorithms using the Cleveland Heart Disease dataset. The performance of J48 improved greatly through feature selection,
but the accuracy for MLP and Random Forest deteriorated. The best accuracy observed was 85.5%, attained by SVM-CFS,
Information Gain, and the like. This leads to a number of issues, especially because of the small size of the dataset restricting
use of the models for actual clinical applications.

Nadikatla Chandrasekhar et al. [4] (2023) implemented six algorithms: Random Forest, KNN, Logistic Regression, Naive
Bayes, Gradient Boosting, and AdaBoost on Cleveland and IEEE Dataport datasets. Their ensemble-based approach using
soft voting yielded better performance with an accuracy of 93.44% on Cleveland and 95% on IEEE Dataport. This,
however, puts into question the applicability in real-life clinical settings due to dependence on curated datasets.

Qadri et al. [5] (2023) proposed a new method of feature engineering, Principal Component Heart Failure (PCHF), and
tested it under nine machine learning algorithms. The Decision Tree model, in particular, managed to give 100% accuracy,
showing its real potential. This method, however, may suffer from overfitting as it was tested on a dataset that is rather
small or too specific.

Biswas et al. [6] (2023) attempted to perform feature selection by Chi-Square, ANOVA, and Mutual Information methods,
using six classifiers. Random Forest combined with the mutual information subset SF3 gave the best result of 94.51%
accuracy and AURC of 94.95. However, this also limited the generalization of the model across other diverse populations
because of its dependency on a particular healthcare dataset.

K. Arumugam et al. [7] (2023) worked on diabetic-specialized heart disease prediction employing Decision Tree, Naive
Bayes, and SVM classifications, wherein the Decision Tree performed slightly better than others. However, the study
stands constrained due to the limited availability of complete datasets specific to diabetic patients.

Ahmed A. H. Alkurdi et al. [8] (2023) built the entire preprocessing pipeline for normalization, SMOTE, and feature
selection with the UCI Heart Disease dataset. They evaluated Decision Trees, Random Forest, SVM, and k-NN classifiers,
all highly capable of metrics such as accuracy and ROC AUC. The biggest disadvantage is that it has become overly
dependent on SMOTE and thus, might be an introduction for synthetic bias.

Mr. J. A. Jevin et al. [9] (2023) proposed a distributed association rule mining framework utilizing intelligent agents across
different medical data sites under privacy constraints. Under stringent privacy considerations, the framework enabled the
efficient discovery of global rules with very low communication. The drawback, however, is that coordination of agents
becomes rather difficult in heterogeneous and dynamic environments.

K-modes clustering and machine-learning models like Random Forest, Decision Tree, MLP, and XGBoost were applied
by Mukesh Kumar Saini et al. [10] (2023) on a Kaggle Dataset of 70,000 samples to GRIDSEARCHCYV for tuning of
parameters. MLP reported accuracy of 87.28% with good AUC scores though dependence on a single dataset undermines
the utility of the model in the real world.

M. H. Fadly et al. [15] (2023) applied SVM, AdaBoost, and hybrid SVM-AdaBoost models on the UCI Cardiac Disease
dataset based on the CRISP-DM methodology. The hybrid technique obtained 90% accuracy, which was better than what
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SVM and AdaBoost achieved individually. Nevertheless, there was not any external validation, so the method cannot be
generalized to broader clinical environments.

S. Yuda Prasetyo et al. [16] (2023) analyzed SVM, Naive Bayes, Decision Tree, and Random Forest algorithms on the
Heart Failure Prediction dataset. Random Forest (91.85%) and SVM (90.76%) showed promising results, thereby justifying
their use for heart disease risk prediction. Nonetheless, the study requires further tuning and validation on a larger dataset.

H. V. R. Bindela et al. [17] (2023) applied SVM with an RBF kernel and K-means clustering on the UCI Cardiac Disease
dataset. SVM scored 91.85% accuracy, while K-means was able to segregate some subgroups with an accuracy of 84%.
The primary drawback is the manual setting of the number of clusters, which decreases consistency and scalability.

[Six ML models, namely Logistic Regression, SVM, Decision Tree, Bagging, XGBoost, and LightGBM, were assessed
for the prediction of myocardial disease by J. Miah et al. 18] (2023). XGBoost scored first with 92.72% accuracy. The lack
of external data testing curbed the robustness of the model.

Anudeepa Gon et al. [19] (2023) examined whether Neural Networks, Logistic Regression, SVM, Random Forest, Naive
Bayes, AdaBoost, and XGBoost yield improvements when applied to clinical and demographic features. Hence, different
versions of the system could attain great accuracy, thus promoting early detection through feature importance insights. On
the other hand, applicability to new populations now depends on the quality and scope of the training data.

V. R. Burugadda et al. [20] (2023) worked with Logistic Regression, Decision Tree, Random Forest, SVM, and ANN
methods and predicted heart failure readmissions using EHR data. The models helped identify the patients at a high risk of
readmissions to better plan their interventions. Limitations include some lack of interpretability and the underrepresenting
of some socioeconomic variables.

In 2024, S. NagaMallik Raj et al. [21] designed a web application thatintegrated XGB-Classifier and gradient boosting are
applied on UCI Heart Disease dataset. With an accuracy of 85% and 93%, the system offers reliable risk predictions,
allowing the users to evaluate the risk adequately. However, the existing prediction model does not consider the time-based
features and may be overfitting; therefore, restricting its wider applicability.

In 2024, Sarah A. Alzakari et al. [22] integrated an loT-system with XGBoost and Bi-LSTM models for remote monitoring
of cardiac diseases with the real-time and electronic clinical data. This framework produces 99.4% accurate prediction with
the best temporal forecast, but privacy issues and challenges in deploying it on a large scale come up as major obstacles.

J. Shanker Mishra et al. [23] (2024) took advantage of XGBoost, Bi-LSTM, and ResNet for cardiac datasets and MRI
imaging to achieve an enhanced diagnostic accuracy of up to 99.4%. The Deep learning inclusion in the system increased
the capability for enhancing feature representation while still requiring solutions for model interpretability and annotated
data.

H. F. El-Sofany et al. (2024) [24] theoretically used feature selection (Chi-square, ANOVA, Mutual Information),
combined with ten ML models, including XGBoost and the SVM, on the UCI dataset. With the SF-2, XGBoost attained
an accuracy of 97.57% and an AUC of 98% according to SHAP interpretation. Still, clinical validation is lacking, and this
brings the synthetic data bias into question.

Class imbalance was tackled by Adedayo Ogunpola et al. [25] (2024) through optimizations of XGBoost, CNN, Random
Forest, and various other classifiers on the UCI dataset. XGBoost topped the leaderboards with 98.50% accuracy and
98.71% F1 score. While the results are quite good, one wonders whether the said results will generalize induced because
the tuning was done in a specific dataset.

Table 1: Based on Machine Learning Techniques

Ref (Author, Technique Used Dataset Key Findings Results Limitations
Year) Used

[1] Chintan M. | K-modes clustering | Kaggle GridSearchCV | MLP:  87.28% | Limited

Bhatt et al., | with Huang | dataset tuning accuracy; AUC | generalizability

2023 initialization + RF, | (70,000 improves up to 0.95 due to dataset

DT, MLP, XGB instances) classification. size and

MLP composition
outperforms
others.
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[2] ALLE | Hybrid Ensemble | Large Ensemble Ensemble > RF, | Not specified;
HARSHA Classifier training and | model DT, SVM, NB, | possibly
VARDHAN et | integrating  weak | validation outperforms LR inaccuracy | generalizability
al., 2023 and strong learners | datasets individual not discussed
models in
predicting
heart
conditions
[3] Zeinab | 16 Feature | Cleveland Feature Accuracy up to | Small dataset,
Noroozi et al., | Selection Methods | Heart selection 85.5% with | limited  real-
2023 +7 ML algorithms | Disease boosts J48 | SVM-CFS, Info | world
Dataset performance Gain applicability
but  reduces
MLP and RF
[4] Nadikatla | RF, KNN, LR, NB, | Cleveland & | Ensemble Soft ~ Voting: | Dependency on
Chandrasekhar | GB, AdaBoost + | IEEE outperforms 93.44% curated datasets
etal., 2023 Soft Voting | Dataport individual (Cleveland),
Ensemble datasets models 95% (IEEE
Dataport)
[5]1 A. M. Qadri | PCHF feature | Health data | DT achieves | DT: 100% | Overfitting due
etal., 2023 engineering + 9 ML | (dataset perfect accuracy to small or
algorithms unspecified) | classification; specific dataset
PCHF
improves
detection
[6] Niloy | Chi-Square, Not RF with | RF: 94.51% | Dataset
Biswas et al.,, | ANOVA, Mutual | specified mutual info | accuracy, 94.95 | dependency
2023 Info + 6 ML | (healthcare features (SF3) | AURC limits broad
classifiers dataset) performs best generalization
[7] K. | Decision Tree, | Diabetes- DT performs | DT > SVM, NB | Limited
Arumugam et | Naive Bayes, SVM | specific best in diabetic | (accuracy not | diabetic-
al., 2023 heart disease | heart disease | specified) specific data
dataset prediction
[8] Ahmed A. | DT, RF, SVM, k- | UCI Heart | Robust High scores | Overuse of
H. Alkurdi et | NN + Preprocessing | Disease preprocessing | across all | SMOTE may
al., 2023 (SMOTE, Dataset pipeline metrics cause synthetic
Normalization, enhances (Accuracy, bias
Feature Selection) model Precision, ROC
performance AUC)
[9] Mr. J. A. | Distributed Distributed Localized Efficient  rule | Complexity in
Jevin et al, | Association Rule | medical data | computation discovery with | agent
2023 Mining using Multi- | (privacy enables minimal coordination in
Agent System constraints) | privacy- communication - | dynamic
preserving rule networks
mining
[10] Mukesh | K-modes clustering | Kaggle MLP achieves | MLP: 87.28% | Single dataset
Kumar Saini et | + RF, DT, MLP, | (70,000 highest accuracy, AUC | limits  cross-
al., 2023 XGB + | instances) accuracy; up to 0.95 scenario
GridSearchCV strong AUC applicability
values for all
[15] M. H. | SVM, AdaBoost, | UCI Cardiac | Hybrid model | Hybrid: 90%, | No external
Fadly et al. | Hybrid (SVM- | Disease offers best | SVM & | validation;
(2023) AdaBoost) Dataset performance AdaBoost: limits
using CRISP- | 86.67% generalizability
DM
methodology
[16] S. Yuda | SVM, Naive Bayes, | Heart RF and SVM | RF: 91.85%, | Needs further
Prasetyo et al. | Decision Tree, | Failure showed strong | SVM: 90.76% | tuning and
(2023) Random Forest Prediction accuracy  for testing on larger
Dataset heart  disease datasets

risk prediction
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[17] H. V. R. | SVM (RBF), K- [ UCI Cardiac | High SVM | SVM: 91.85%, | Manual cluster
Bindela et al. | means Clustering Disease accuracy; K- | K-means: 84% | selection limits
(2023) Dataset means  finds consistency
hidden
subgroups
[18] J. Miah et | LR, SVM, DT, | Not UCI | XGBoost XGBoost: No external
al. (2023) Bagging, XGBoost, | Cardiac outperformed 92.72%, validation
LightGBM Disease others in | LightGBM: reduces
Dataset myocardial 90.60% robustness
illness
prediction
[19] Anudeepa | Neural  Networks, | Clinical & | High accuracy; | High accuracy | Real-world
Gon et al | LR, SVM, RF, NB, | Demographi | feature (not quantified) | applicability
(2023) AdaBoost, XGBoost | ¢ Data importance depends on
helps in early dataset quality
detection
[20] V. R.|LR, DT, RF, SVM, | Electronic ML models | Evaluated via | Gaps in
Burugadda et | ANN Health help  identify | accuracy, interpretability
al. (2023) Records high-risk heart | precision, and fairness due
(EHR) failure recall, F1 to unbalanced
readmission features
patients
[21] S. | XGB-Classifier, UCI Heart | Web app | XGB: 85%, | Excludes time-
NagaMallik Gradient Boosting Disease enables early | GB: 93% based feature;
Raj et al. Dataset diagnosis  and possible
(2024) risk prediction overfitting
[22] Sarah A. | IoT + XGBoost + | ECD + | Remote Accuracy: Privacy and 10T
Alzakari et al. | Bi-LSTM Real-time monitoring 99.4% deployment
(2024) Data with Bi-LSTM challenges
yields excellent
temporal
prediction
[23] J. Shanker | XGBoost, Bi- | Cardiac Combines Accuracy: up | Needs
Mishra et al. | LSTM, ResNet Data + MRI | imaging and | to 99.4% annotated data;
(2024) Images structured data; interpretability
deep learning concerns
boosts
accuracy
[24] H. F. EI- | FS (Chi2, ANOVA, | UCI Cardiac | XGBoost with | Accuracy: Lacks clinical
Sofany et al. [ MI) + 10 ML | Disease SF-2 subset | 97.57%, AUC: | validation;
(2024) Models incl. | Dataset gave top | 98% synthetic ~ data
XGBoost, SVM, RF accuracy; may bias results
SHAP for
explainability
[25] Adedayo | XGBoost, CNN, | UCI Cardiac | Tackles class | Accuracy: Limited
Ogunpolaetal. | RF, + 4 others Disease imbalance; 98.50%, F1: | generalizability
(2024) Dataset XGBoost 98.71% beyond  tuned
achieved best dataset

overall metrics

I11. RESEARCH OBJECTIVES

e Todevelop a privacy-preserving federated learning framework for heart disease prediction using distributed medical

datasets.

e Totrain local Support Vector Machine (SVM) models at each institution without sharing raw patient data. To address

class imbalance through up-sampling and advanced modeling techniques.
e To aggregate local model parameters to build a robust global model using XGBoost.

e To validate model generalizability and prevent overfitting using k-fold cross-validation.
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IV. RESEARCH METHODOLOGY
A. Distributed Association Rule Mining algorithm for Predicting heart diseases

The DARM algorithm extracts hidden/unseen patterns from distributed medical databases with privacy preservation
created through encrypted summary statistics instead of sharing patient-level data.These outcomes are studied through
interestingness measures such as support, confidence, and lift- not prediction metrics such as precision or ROC-AUC.The
generalizability of the model is tested by validating association rules in multiple data silos, with different distributions.Even
though this approach retains privacy, it does not retain the flexibility and discriminating potential of supervised machine
learning for complex, non-linear prediction tasks. Privacy Preservation with the proposed methodology, privacy
preservation is a primary concern given the sensitive nature of medical data. To keep patient data private, federated learning
architecture is used to combine both SVM and XGBoost models so that the data never gets shared across institutions.In
this methodology, the local SVM model is trained at each institution on its own data, therefore learning the model without
any raw data leaving the institution to some central place.

B. SVM model For Predicting Heart Diseases

This federated framework is designed for two medical institutes so that they can train models for heart disease prediction
by sharing the model parameters only, such as support vectors and hyperplane coefficients, instead of actual patient data
in compliance with the GDPR/HIPAA data privacy requirements, and also privacy is maintained by cryptographic means.
Local SVM models are trained and meta-aggregated by XGBoost to tackle class imbalance, generalize better, and hence
retain very strong predictive performance in heterogeneous profile medical datasets which are non-11D in nature. The UCI
Heart Disease dataset, consisting of 303 observations with 14 clinical features and demographic attributes, is used to train
the federated heart disease prediction models. Mean imputation treatment handles missing data, Min-Max normalization is
applied to continuous features, and label encoding is performed on categorical ones. This way, we get well-balanced,
trustworthy, and uniformly scaled data to be fed to the SVM and XGBoost learning methods, while patient privacy remains
protected across institutions. Fig 2 shows preprocessing method.

Upload dataset

!

Mean Imputation for Missing Values

v

Apply Min-Max Scaling

v

Label Encoding for Categorical Features

'

Apply Up sampling to Balance Classes

Fig. 2 Diagram of Pre-processing method
C. Hybrid SVM Model

SVM Model

For binary classification with heterogeneous medical features, this margin-based method maximizes the margin so as to
ensure better generalization and reduced overfitting. The optimization problem solved by SVM can be expressed as follows:

.1 2
min = [|w] (1)
Subject to the constraint:
yiwTx; +b) =1V, )
w Weight vector ,b Bias or intercept term , ||w|| Euclidean norm, x; Feature vector of the i‘" training sample, y; Label of
the it" training sample, w”x; Dot product between weight vector w and input vector x;,v; For all data points i in the
training dataset, %llwll 2 Regularization term to maximize the margin .
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XGBoost Model
XGBoost was chosen for global model aggregation due to its ability to work with class imbalance and scale very well with
high-dimensional medical data, applying gradient boosting, therefore iteratively to achieve refined predictions with reduced
bias and variance. Adjusting the gradients and Hessian weights, along with the newly introduced hyperparameter
scale_pos_weight, XGBoost increases sensitivity toward minority-class problems such as heart disease. The objective
function is given by:
Li@)=i=13nl(y,9) +k=1XKQ(fK) @)
L(¢): Overall loss function ,n: Total number of training samples, [ (y;, 7;): Loss function measuring the difference between
the true label y; and the predicted label 9;. Common loss functions include Mean Squared Error, Cross-Entropy, etc, 9;:
Predicted output for the it* sample, K: Number of models , Q(fK): Regularization term for the K" model (fK), which
controls model complexity , (fK): The K** model or function in the ensemble, ¢: Set of all parameters being optimized
(could include weights, biases, or model-specific parameters). At each iteration, XGBoost improves the prediction by
adding a new tree that fits the residual errors from the previous model. The updated prediction is:
grev = 9o+ n - fir (o) (4)
Where n\etan is the learning rate, controlling how much the new model contributes to the final prediction.
a) Handling Imbalanced Data
XGBoost handles imbalanced data using L1/L2 regularization and dynamic re-weighting that emphasizes misclassified
samples from the minority class so as to improve sensitivity. The approach, when combined with the ROS-based up-
sampling in preprocessing, is aimed to increase recall and precision toward heart disease prediction, and thus mitigate the
bias toward the majority class.
b) Cross-Validation
In order to improve the robustness, stability, and generalizability of the methodology, 5-fold cross-validation was
incorporated, wherein the dataset was randomly distributed into five parts; in each fold, one part served as the validation
set while the remaining four parts were used in training. This process alleviates bias and variance levels inherent with a
single split, allowing for reliable performance estimates and serving the purpose of hyperparameter tuning for the heart
disease prediction model.
Zg;lAccuracy on fold i (5)

Cross — Validation Accuracy =

k
Cross-validation is particularly important for evaluating the XGBoost global model to ensure that it generalizes well across
different data distributions from various institutions (Alice and Bob) without over fitting.
c) Model Aggregation
Post local training, the learned parameters such as decision trees, weights, and thresholds from each XGBoost model are
sent to a central aggregator, which then merges the models into a global model. This federated scheme of aggregation
improves generalizability across different patient populations and safeguards privacy by avoiding the exchange of raw data.

D. Evaluation Metrics
The study evaluated local SVM and global XGBoost models for heart disease classification using metrics of accuracy,

precision, recall, F1-score, and k-fold cross-validation. Such measures guarantee balanced performance considering false
positives and false negatives, which are of utmost importance in medical diagnosis.

Accuracy
True positive+True Negetive
Accuracy = P g (6)
TotalNumber of Instance
Precision
- True positive
Precision = it — (7
. True Positive+False Positives
Recall (Sensitivity)
True Positives
Recall = — - (8)
True Positives+False Negatives
F1-Score
PrecisionXxRecall
F1—Score =2 X —— )

i o i Precision+Recall o i .
This metric is valuable in the context of heart disease prediction, where both high precision and recall are necessary to

ensure accurate and reliable predictions.

V. RESULT AND DISCUSSION

This section presents a comprehensive performance evaluation of the machine learning models developed in this study,
including the locally trained Support Vector Machine (SVM) classifiers at Alice and Bob, as well as the globally aggregated
model constructed using Extreme Gradient Boosting (XGBoost). The evaluation employs a suite of statistical and
classification metrics—namely, Accuracy, Precision, Recall (Sensitivity), F1-Score, and the Receiver Operating
Characteristic (ROC) Curve with Area Under the Curve (AUC)—to provide a multifaceted assessment of model
performance.
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Results of ARM for Heart Disease
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Figure 4 Results of ARM for Heart Disease Prediction
Figure 4 shows the results of ARM for Heart Disease Prediction. Applying ARM to an experimental prediction for heart
disease yielded an accuracy of 89%, meaning 89% of the predictions made from rules generated were consistent with real
diagnoses in the test dataset. This exhibited that ARM might actually be able to contribute some take-home clinical insights
while still respecting predictive integrity.

a. ROC Curve of ARM

ROC Curve

00 02 04 06 [ 10
False Positive R

Figure 5 ROC Curve
The ROC Curve being shown in Figure 45 evaluates the performance of a classification model. The ROC curve plots the
True Positive Rate (TPR), which is also known as sensitivity or recall, against the False Positive Rate (FPR) at various
points of classification thresholds. The blue curve essentially shows how well the model can distinguish between positive
and negative classes, whereas the dashed diagonal line acts as a random classifier (like random guessing), with the AUC
(Area Under the Curve) equal to 0.5.

b. SVM Model Performance (Local Models)

The SVM models were trained locally at Alice and Bob, ensuring that no raw data was shared between institutions. Each
model was trained on its respective institution's dataset and then evaluated on a separate test set. The training and testing
results are summarized below, comparing the model's performance on both the training and test datasets to evaluate any
potential over fitting or under fitting. Figure 6 shows performance of svm models (alice and bob)

Performance of SVM Models
(Alice and Bob)

© 100.00% I I
= Accuracy Precision Recall F1-Score
Axis Title

M SVM (Alice) ®SVM (Bob)

Figure 6 Performance of SVM Models (Alice and Bob)
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SVM Model Performance Metrics (Alice and Bob)
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Figure 7 SVM Model Performance Metrics
Figure 7 shows SVM Model Performance Metrics. In the bar chart, the academy of performance comparison for the SVM
models at Alice and Bob across the key metrics is displayed. Bob's model donned a slightly higher accuracy of 98.7%,
against Alice's 98.2%. Alice performed better in precision, nominally, at 97.4%, against Bob's 96.9%; however, recall and
F1-score were almost similar-go by just barely-90.5% for Bob, compared to 90.4% for Alice. Both models can therefore
be said to be strong and balanced.
Table 2 Training and Testing Performance of SVM Models

Metric SVM (Alice) SVM (Alice) SVM (Bob) Training SVM (Bob)
Training Testing Testing
Accuracy 96.5% 95.2% 95.8% 93.7%
Precision 94.7% 92.4% 93.1% 90.9%
Recall 99.6% 98.5% 98.9% 96.3%
F1-Score 92.0% 90.4% 91.0% 98.5%

Training Data Distribution Testing Data Distribution

Frequency

2.5 3.0 0.0 0.5 10 L5 20 2.5 30

Target Classes

Figure 8 Training and Testing data
Figure 8 consists of two bar charts, displaying the target class distribution in the training set (left) and the testing set (right).
Each chart shows the frequency of various target classes for model training and testing, relating to the presence of heart
disease.

c. XGBoost Model Performance (Global Model)

The XGBoost model, trained on the aggregated knowledge from both Alice and Bob, showed improved performance across
most evaluation metrics. The figure 9 below summarizes the global model's performance.

XGBooST model's performance

100.00%
98.00%
96.00%

94.00%
92.00% l
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Accuracy Precision Recall F1-Score

B XGBoost (Global)

Figure 9 XGBooST Model's Performance
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XGBoost Training vs Testing Performance
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Figure 10 XGBoost Training and Testing Performance
The bar chart shows how the XGBoost model consistently performs well in both training and testing phases. The accuracy
was 98.5% throughout, whereas precision was 95.8%, recall 93.6%, and F1-Score 94.7%. These results demonstrate that
the model generalizes well without overfitting and evenly balances an aspect between precision and recall. Figure 10 shows
xgboost training and testing performance

d. ROC Curve Observations
Alice’s and Bob’s SVM models achieved AUCs of 0.93/0.92 and 0.91/0.90 (training/testing), showing solid but slightly
lower performance on unseen data. The global XGBoost model outperformed them, with an AUC of 0.98 on testing,
indicating superior generalization and discrimination between heart disease and non-disease cases.
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Figure 11 ROC Curves for SVM and XGBoost Models comparison
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Figure 12 ROC curves for the local SVM mode
The global XGBoost model outperformed local SVM models across all metrics, with feature-importance analysis
highlighting thalach and oldpeak as the top predictors for heart disease.

e. Model Performance Comparison
Table 43Performance Comparison Between Base ARM Method and Proposed SVM + XGBoost Methodology

Metric Base Paper Proposed Methodology

Performance Performance (SVM +
(ARM) XGBoost)

Accuracy 86.30% 98.5% (XGBoost),
95.2% (SVM at Alice)

Precision 89% 95.8% (XGBoost),
92.4% (SVM at Alice)

Recall 84% 93.6% (XGBoost),
98.5% (SVM at Alice)

F1-Score 86% 94.7% (XGBoost),
90.4% (SVM at Alice)

AUC 96% 98% (XGBoost), 92%

(ROC) (SVM at Alice)
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f. Discussion of Performance Differences

While ARM focused on pattern-discovery and did not have the essential evaluation metrics, our XGBoost-based technique
reached an accuracy of 98.5%, equated in both precision and recall, and gave insights about feature importance regarding
heart disease prediction.
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Figure 13 Confusion Matrix for SVM
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Figure 14 Confusion Matrix for Association Rule Mining (ARM)
The confusion matrices compare SVM with ARM models for heart disease prediction. The SVM model was able to achieve
3 true positives, 4 true negatives, 0 false positives, and 1 false negative; thus, quite capable of correctly identifying diseased
cases as well as correctly diagnosing non-disease cases without ever misjudging the healthy ones. For ARM, the number
of true positives was the same (3), and the number of false negatives was the same (1), while they differed in the count of
true negatives (2) and false positives (2), which means it had less specificity. Therefore, SVM performed better than ARM
in the trade-off of identifying non-disease cases and false positives, hence qualifying as the more reliable clinical options.
Precision, Recall, F1-Score Comparison
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Figure 15 SVM and Association Rule Mining

Figure 15 shows SVM and Association Rule Mining .The bar graph under investigation statistically compares Precision,
Recall, and F1-Score across the two models: SVM and ARM. The categorizations show the SVM outdoing the ARM model
in predicting power.Because Precision measures the fraction of positive predictions that the algorithm labels correctly and
conceives false positives, a higher value hints that the SVM model is more accurate at detecting true heart disease cases.
Recall demonstrates the extent to which the model captured actual instances of heart disease and, conversely, minimized
instances of false negatives. The high F1-Score between these two measures also enhances the overall capability of the
SVM algorithm. The results in their entirety indicate that SVM would be considered far more trustworthy and accurate
compared to ARM when predicting heart disease.
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Figure 16 Accuracy Comparison
Figure 4.14 compares ARM and SVM accuracies, showing SVM with near-perfect accuracy and superior precision in
identifying heart disease cases. While ARM performed reasonably well, its lower accuracy highlights SVM’s stronger
predictive capability.

VIl. CONCLUSION

This work validates the use of a federated learning architecture combining locally trained SVM classifiers with a centrally
consolidated XGBoost model for heart disease prediction, while preserving data privacy. The method enables training
SVM models locally with Alice and Bob both achieving high accuracies of 98.2% and 98.7%, with F1-scores of 0.904 and
0.905, respectively. However, both models shared similar recall values, approximately 0.89, which suggests false negatives,
a major deterrent in medical diagnosis. Global classifier, the other hand, showed better performance: with an overall
accuracy of 98.5%, precision 0.958, recall 0.936, and F1-score 0.947. The framework protects patient data as institutions
are allowed to exchange only model parameters (e.g., support vectors, kernel weights, and tree-splitting criteria) rather than
raw data, thus significantly reducing the risk of re-identification. Feature importance derived from the XGBoost model
suggests that “maximum heart rate achieved” and “ST depression (oldpeak)” are two leading predictors, in agreement with
clinical cardiology intuition. In contrast to the baseline ARM method, with an accuracy of 86.3%, precision of 0.89, and
recall of 0.84, the federated SVM + XGBoost framework shows that it has superior predictive capabilities. Nonetheless,
limitations exist. For one, only two institutions, with relatively homogeneous datasets, are applied in the current
implementation, a fact that limits the generalizability to heterogeneous clinical environments. In the future, adaptations
should allow heterogeneity in data schemas, potentially leveraging vertical federated learning or secure multi-party
computation. Despite enhanced privacy, parameter sharing is still susceptible to inference attacks; therefore, the framework
should include privacy-preserving techniques, e.g., differential privacy or homomorphic encryption. Moreover, the
scalability of SVMs in the setting of high-dimensional or multimodal data has to be tackled. Finally, because of its
retrospective nature, the present study needs future prospective evaluations to establish applicability, operational
scalability, and acceptance by clinicians in live healthcare settings.
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